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QUANTITATIVE THEORY OF THE ELECTRIFICATION OF 

FALLING AEROSOL PARTICLES IN A ONE-DIMENSIONAL RISING 

AIR CURRENT 

A. V. Filippov and L. T. Chernyi UDC 532.584:537~ 

Electrical phenomena in the lower strata of the atmosphere are known [1-3] to be 
determined essentially by the presence of ascending and descending air currents. These 
flows transport ions that exist in the atmosphere, where they are created mainly by radio- 
active emission. The atmospheric electric field, which also affects the motion of ions, 
in turn, depends itself on the concentration of those ions. The distribution of the ion 
concentrations and the electric field in rising air currents must be known, e.g., in 
calculating the charge of raindrops as a result of ion capture. The converse influence of 
drops on the ion and electric field distributions can be neglected in this case if the 
concentration of the drops is sufficiently small. Analogous phenomena are also encountered 
in the charging of aerosols in electrohydrodynamic devices that utilize special radioactive 
emission sources for the ionization of a gas [4, 5]. 

In this article we develop a theory to describe the distribution of the ion concentra- 
tions and electric field strength in one-dimensional air flows, as well as the electrifica- 
tion of falling aerosol particles in those flows in the case of a low particle concentration. 
The condition of one-dimensionality of the flow and the electric field is only approximately 
satisfied in a certain restricted zone of the air flow in practice. However, this custo- 
mary assumption [I] makes it possible to formulate characteristic model problems that 
mirror extremely complicated natural and industrial processes. Their solution can be used 
as a basis for obtaining estimates of various quantities and pursuing qualitative studies 
of physical phenomena. 
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i. Suppose that a gas containing ions with charges ~e (e > 0) move translationallywith 
a specified constant velocity u, the direction of which coincides with the direction of the 
electric field vector E. We consider steady motions of the ions in the half-space z > 0, 
when all the flow parameters depend only on one coordinate z (the z axis is parallel ~o the 
vectors u and E). Such flows are described by the system of equations 

dZ • dE = 4~e (n+ - -  n_), d-"~ = ~ -- an+n_, "~z 
(1.1) 

dn+ 
I+  = - -  D+  ~ + n• (u + b+E).  

Here n+ denotes the concentrations of positive and negative ions; b+ denotes their mobilities, 

which are related to the diffusion coefficients D+_ by the Einstein relation b+_ = +_eD+/(kT); 

is the recombination coefficient, which is expressed in terms of the ion mobilities in 
dense gases according to the Langevin equation a = 4~e(b+ - b_); 13 is the local rate of ion 

production as a result of, e.g., radioactive emission; and no = ~/~ is the equilibrium 
concentration of negative and position ions. 

It follows from Eqs. (i.i) that the resultant (net) ion current J = e(I+ - I_) = const. 

We analyze flows for which J = 0. We specify the boundary conditions at z = 0 and z = 

z+(0) = I~, s = Zo, n• = no. ( 1 . 2 )  

From relations (i.i) and (1.2) we obtain E(~) ffi 0. 

Next, we assume that E0 is positive. This assumption does not detract from the 
generality of the problem statement. Indeed, the following substitution is allowed in the 
case E0 < 0: 

n ~ ) : n _ ,  n(J ) = n+, E (1) = - - E ,  ( 1 . 3 )  

b~ ) =  tb_],b(l  ) = - - b + ,  E(t)(0) = - - E o > O .  

Once the problem (i.I), (1.2) has been solved for the quantities nl z) and E! z), the 

values of n+(z) and E(z) are determined from Eqs. (1.3) by the inverse ~ransformations. 

We introduce the dimensionless variables 

, ~ , It: egE z 
T f "  V ' n+ = I+ : ~ou , E* = z* = 

n o ~' 

(1.4) 

where < = /kT/(8~e2n0) is the Debye radius. We use the dimensionless quantities (1.4) below, 
dropping the asterisks for convenience. 

We first consider the case in which the ion mobilities are equal in absolute value. 
Then the following boundary-value problem is deduced from relations (i.i), (1.2), (1.4) for 
the dimensionless values of the charge q = n+ - n_ and the total ion concentration n ffi n+ + 
n : 

+ + = 2 + 
dz ~ dz 

dE 
d2q + T z  (nE) + Pe"~z - - 0 '  "~-z ----~; 
d z  2 

dn (o) 
n (0) + Re~lq (0) - -  Pe-" 1 ""/F-z ---- 21o, 

q (0) + Re~ln (0) - -  Pe -1 d q = O, 
dz 

(1.5) 

(1.6) 

E(0) := Pe/ReE, n(oo) = 2, q(oo) = 0. 
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Here Pe = uK/D is the P~clet number with respect to the Debye radius and Re E = u/(lb_lE 0) 
is the electrical Reynolds number. 

In the case E(0) = Pc/Re E = 0, I0 = I the solution of the problem (1.5), (1.6) is 
trivial: E ~ 0, q ~ 0, n ~ 2. Let us now suppose that a small deviation from this state 

takes place and E(0)= Pe/ReE<<I , II0-- i[<<I. The solution of the equations obtained for 
the perturbations of the unknown quantities n' = n - 2, q', E' by the linearization of 
relations (1.5) and (1.6) can be written in the form 

q~ = 2 Pe ~ r~' 
Re s e -~z, = 4t(I  o t)  Pe ~ e - ~ ,  

Pe Ve ~ _ ~ . ~  Pe ] / P e  ~ 
E '  = h-~Ee -"~, k ~ 2 + + 2, ~ = - -  -~- + T + t 

(1.7) 

The validity of the following asymptotic expressions is obvious: 

~, = ] / " 2 - +  o(Pe), ~t = 1 +  o(Pe), Pe -+  O, 

~ ' = b - - ~ +  o ~ , ILt=~--d + o ~-g , Pe--, ,-cr 

(1.s) 

It follows from the definition of the dimensionless coordinate z* = z/K, the solution 
(1.7), and relations (1.8) that the characteristic length L E of decay of the electric field 
is determined by the relations L E = K for Pe << i and L E = Pe K >> K for Pe >> I. In the 

latter case L E = Pe ~ = u/(4~g), where c = 2en0b is abe conductivity of the gas. This result 
can also be obtained directly from Eqs. (i.I) by discarding terms with the coefficients D+. 
For ascending flows of pure atmospheric air under standard conditions, n o a 5oi0 a m -s, - 
D+ = 2.8"i0 -6 m2/sec, D_ = 4.3.10 -6 m2/sec, e = 1.6.10 -19 C, u ~ 1 m/sec, and so K ~ 4"10 -2 

m, Pea I0 u, and L E a 4"10 2 m. 

A very high ion concentration (n o ~ 5"10 12 m -3 [5]) is attained in electrohydrodynamic 
devices, owing to the use of special radioactive emission sources for the ionization of air~ 
As a result, for the same values of D+, u, e we obtain < ~ 4"10 -~ m, Pe ~ 10 2 , L E = Pe < 
4"10 -2 m. Consequently, L E >> K in b~th cases. 

2. It is convenient to introduce new dimensionless variables for the investigation of 
flows with large values of the P~clet number: 

z** = z* /Pe  = Z/LE~. E* *  = E * / P e  = [b_]E/u, 

** * I**  = I*  = I / (nou  ). n •  = n+ = n~/no~ 

( 2 . 1 )  

We use the dimensionless quantities (2.1) below, dropping the asterisks for convenience, 

Equations (I.i) and the boundary conditions (1.2), written in the new dimensionless 
variables (2.1), have the form (X = b+/Ib_l) 

dI+ i ( t  + X) (1 - -  n+n_) ,  ~---~ = ~  

I +  = n +  ( t  + ~E)  z an+ pe 2 dz l _  = n_  (t  - -  E)  t dn 
' p e  2 d z  ' 

dE i 
a-[ = ~ (n+  - -  n _ ) ,  

I + ( 0 )  = Io, E(0) = Eo = t /ReE,  n•  ( c o ) =  t .  

(2.2) 

Terms proportional to i/Pe 2 can be neglected in the limit Pe § ~. Then, invoking the 
integral 

I + - - I _  = n + ( t  + x E ) - - n _ { t - - E )  = O, 

we arrive from Eqs. (2.2) at a boundary-value problem for determining the dimensionless 
values of the electrical charge density q = n+ - n_ and the electric field E as functions 
of the coordinate z: 
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dq _ 12 + ( X .  1) El qS - -  (t + ~)2 E dE t 
d-'~ - -  2 (t - -  E) (t -}- XE) E ' d"~" = "~ q'  E (0) = Eo, 

q(0) = (1 + X)Eolo/[(Eo - - i ) ( t  Jr  XEo)]. 

(2.3) 

Solving the problem (2.3), we find the concentrations of positive and negative ions 
according to the equations 

- -  ( l  - -  E) q - -  (i -~- XE) q ( 2 . 4  ) 
n + =  ( i + X ) E  ' n _ =  ( i + X ) E '  

which follows from the definition of q = n+ - n_ and the integral I+ - I_ = 0. 

It follows from Eqs. (2.4) that the solution of the problem (2.3) has physical signifi- 
cance only for E 0 < i (otherwise the value of n+ becomes negative). 

From (2.3) we obtain an equation for the function q(E): 

dq [2 + (X - -  i)E] q ~ "  (i + Z) ~ E ~ ( 2 . 5 )  
dE (1 - -  E) (1 .-~- XE) qE 

A typical pattern of the integral curves of Eq. (2.5) is shown in Fig. 1 (the arrows 
indicate the direction in which the coordinate z increases). The integral curves corres- 
ponding to the initial value I 0 = 0 begin on the interval (0, i) (curve i) of the E axis. 
They are separated from the integral curves of the type 3 with an initial value I0 # 0 by 
the separatrix 2, which emanates from the si~r point P (of the "saddle-point" type) 
with coordinates E = E(0) = i, q = q(0) = --/i + X (I0 = 0 on the separatrix). All the 
integral curves terminate at the zero point E = 0, q = 0, which corresponds to the limit 
z + ~. It is seen that the field E always decreases with increasing z. 

If the mobilities of positive and negative ions are equal in absolutevalue (I b_ I = b+, 

X = i), Eq. (2.5) is analytically integrable. In this case the solution of the problem (2.3) 

has the form 

1 

E u - -  2E E~ + 2 E  ~ In  Z-.  ] ' 
q --" T - c T  1 +  ( / ~ - -  1)~o~ _ o j  

E 1 

-~o E~o.--I-. /~ lnEo j. at,,-. 

If X ~ i, the problem (2.3) must be solved numerically. The results of such a computation 
in the form of curves E(z) for values of X = 0.i, 0.71, i, 1.4, and i0 (curves 1-5, 
respectively) are shown in Fig. 2. It is assumed that E 0 ffi 1 and I 0 = i. It is seen that 
large values of the parameter X correspond to a more rapid decay of E with increasing z. 
For atmospheric dry air under standard conditions it can be assumed that b. = 1.37"10 -4 
m2/(sec-V), b_ = -1.9.10 -4 m2/(sec.V), and X = 1.37/1.0 ~ 0.71 [3]. If E0+ < 0, we can 
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transform (1.2) and, under the stated assumptions for the dimensionless quantities 
E (1) = -E/(b+u) and q(1) = (n_- n+)/n0, arrive at the boundary-value problem (2.3) with 

the value X = 1,9/1.37 ~ 1.4. 

3. Let us assume that an initially uncharged spherical conducting particle (drop) 
of radius a falls under the actionof gravity in the investigated flow with a constant 
velocity v > 0 in the direction opposite to the flow. The dependence of the particle charge 
ep on the coordinate z is described by the equation 

dep ( 3 . 1 )  
--v-~= ] +  + J - ,  e v ( ~ )  = 0~ 

in which J+ denotes the ion currents impinging on the particle. 

The electric field and ion concentration in the flow are determined from the solution 
of the problem (2.3). According to the results of Sec. 2, the condition E]b_I/u < i holds 
everywhere in the flow. Accordingly, the velocity u + v of the gas flow around the particle 
is always greater than Ib_IE. The following expressions hold in this case for the positive 
and negative ion currents J+ impinging on the particle as a result of ion diffusion [6, 7]: 

I ~zeb_4_n + 
] ~  (e  v - -  3aZ E)z, l ev [ <~ 3a~ E,  

I+ = ~_ 4=eb+n+ev, ev < _ 3aZE, ( 3 . 2  ) 

[0, e v > 3a~E, 

I "  4~e [ b_ [ n_ep, % >~ O, 
J -  = (0, e v < O. 

The difference in the expressions for J+ is attributable to the following. Although 

both types of ions impinge on the particle from below, they settle on different parts of its 
surface. For example, in the case 3a2E > ep > 0 positive ions settle only on the underside 
of the particle, while negative ions move around the particle and settle primarily on its 
topside [3, 6, 7], because for them b (Ev) > 0 at the lower critical point (9 is the out- 
ward normal to the surface of the particle)o For ep < 0, positive ions settle partially 
on the topwise of a drop, while negative ions move around it and are carried away by the 
air flow without settling [3, 6, 7]. Equations (3.2) are derived both for Stokes flow 
(Re << i) and for nonseparating potential flow (Re >> i) of a spherical particle [3, 6, 7] 
and are customarily used for investigations of the electrification of aerosol particles 
over a wide range of Re [1-3, 6]. 

It is evident from Eqs. (3.2) that an initially uncharged particle in the investigated 
flow can acquire only a positive charge satisfying the condition 0 < ep < 3a2E. 

Below, we use the dimensionless variables 

** Ib- leP v * * = v  (3.3) ep "-~ ~ '  u " 

We drop the asteriskfor convenience. 

Equation (3.1) in the dimensionless variables (2.1), (3.3) has the following form 
with allowance for the current expressions (3.2) and the inequality 0 < ep < 3a2E: 

V d"--z -- - -  N + ~ n~ep' % ( ~ )  = O, 
(3.4) 

where n+ and E are specified functions of the coordinate z, which are determined according 
m 

to Eqs. (2.4) on the basis of the solution of the problem (2.3) with fixed initial values 
of I0 and E 0 . From the integral I+ - I_ = 0 we obtain the relation 

t -~-XE 
n +  ---- I_----C-T n _ .  
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We use it to deduce the following from Eq. (3.4) and the second equation (2.3): 

dep i X ( I - - E )  l - -  - - 4 ( I + x E )  ~ ,  % l E = 0 = 0 .  
a-~ = ~ (i + X) v 

The s o l u t i o n  o f  Eq. ( 3 . 5 )  y i e l d s  a u n i v e r s a l  f u n c t i o n  eD(E, v ,  X),  which  i s  t h e  same 
for all solutions of the problem (2.3) with different initial values of I0 and E0. 

The results of the numerical integration of Eq. (3.5) for various values of the 
constants X and v are shown in Figs. 3-6, where the point E = 0, ep = 0 corresponds to the 
limit z + ~ and curves 1-4 corresponds to X = 1.4, i, 0.71, 0.i. 

The function e (E) is nonmonotonic, and it has a maximum corresponding to the maximum P 
charge acquired by the particle in its motion. FOr a mixed value of the parameter X = b+/Ib_l 
the maximum charge decreases as the dimensionless velocity v is increased (the particle 
"has less time" to become charged) and is the greatest for equilibrium charge, v + 0 (Fig. 3). 
For a fixed value of the parameter v the dimensionless charge ep for a given value of E 
decreases as the ratio b+/Ib_I = X is increased. All the foregolng considerations are based 

on the assumption 1 > E0 > 0. If -i < E 0 < 0, the particle becomes negatively charged. In 
this case, writing the corresponding expressions for J+ in (3.1) and then making the change 

of variables (2.1), we arrive at Eq. (3.5) with the vaTue of the constant X = Ib_I/b+, 

which determines the dimensionless charge e (1)p = -b+ep/(3a2u) as a function of the dimension- 

less electric field E (I) = -b+E/u. For example, the curves corresponding to X = 1.4 in 

Figs. 3-6 characterize both the function e**(E **) for E0 > 0, b+/Ib_l = 1.4 and the function 
P 

e (I) (E (I)) for E o < 0, b+/Ib l = 1/1.4 = 0.714. 
p 

As an example, we consider an aerosol particle of radius a = 1.5"10 -~ m falling in an 
ascending air flow (b_ = -1.9"10 -4 m2/(sec'V), X = 0.71, u = 1.2 m/sec). The maximum 
charge on the particle during slow descent (v << u) is equal to 2-i0 -Is C. The height L m 
at which the particle acquires its maximum charge also depends on the quantities E0, no, 
I0, e. In particular, for E0 ~ 6"103 V/m, n o s 5"108 m -3, I o = n0u = 6"i0 s m -2 sec -I, 

e = 1.6-i0 -19 C we obtain L m s 2"102 m; for n o ~ 5"1012 m -s, I 0 = 6"1012 m -2 sec -I, and 

the same values of Eo, e as before, we have L m ~ 2"10 -2 m. In further descent, the particle 
loses charge due to the capture of positive ions. 
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In the above-considered one-dimensional flows the parameters ~, 6, b+, D+, u and v 

have been regarded as constant. This is justified in application to atmospheric phenomena 
for L E ~ 102 m. For significantly larger values of L E = KPe, generally speaking, it is 

necessary to take into account the height dependence of the indicated parameters, along 
with the nonuniformity of the air currents. 
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